

SELECTIVE ANALYSIS OF DITHIOCARBAMATES BY CLASSES:

Overview of the French working group project

Marine Lambert¹, Antoine Daguin², Guillaume Quéré³, Antoine Ducrocq¹, Guillaume Morin², Annie Brisard³, Chanthadary Inthavong¹, Florence Gérault⁴, Gwenaëlle Lavison-Bompard¹

¹Anses, Maisons-Alfort, France - French NRL-SRM

²GIRPA, Beaucouzé, France

³Capinov, Landerneau, France

⁴The French Directorate General for Food, Ministry of Agriculture, Paris, France

Investigate, evaluate, protect

Anses, a « One Health » Agency

French Agency for Food, Environmental and Occupational Health & Safety

Anses, a « One Health » Agency

French Agency for Food, Environmental and Occupational Health & Safety

Laboratory for Food Safety

Pesticides and Marine
Biotoxins Unit

Pesticides team:

- NRL for AO and SRM (including chlordecone)
- Method development and validation
- PTs organisation
- Scientific/technical advice and support to Ofls
- Scientific advice and support to competent authorities
- Participation to standardization committees
- Official analyses

Dithiocarbamates: setting up a working group...

- Broad-spectrum fungicides widely used in the past decades
 - → among the most frequently detected pesticides in the EU

Residue definition: Dithiocarbamates (dithiocarbamates expressed as CS₂, including maneb, mancozeb, metram, propineb, thiram and ziram)

3 main classes of DTCs:

A rapid sensitive analysis of dithiocarbamates fungicides using modified QuEChERS method and liquid chromatography-tandem mass spectrometry, Kakitani et al., J. Pestic. Sci. 42(4), 145-150 (2017)

... many analytical difficulties

(DTC solubility, stability, complex polymeric structure...)

Several analytical methods and strategies:

- Reductive cleavage to CS₂
- Amine-moiety analysis (propineb as propylene diamine)
- Derivatisation methods
- LC-MS/MS detection of the ligands
- Screening approaches of DTC markers (EURL-SRM work, eBIC, pBIC, ETU, PTU)

.

Dithiocarbamates: setting up a working group...

- Reductive cleavage to CS₂: some major drawbacks
 - > False-positive results on naturally sulfur containing matrices (Brassicaceae, Alliaceae)

Need for an analytical method more reliable on these matrices which allows the selective and specific quantification of DTCs

→ EFSA recommendation, in a context of MRL revisions

→ Emergence of methylation methods among some French laboratories

With the support of the French Competent Authority, creation of a national working group in order to assess and improve the reliability of such methods

Dithiocarbamates: setting up a working group... anses French NRL-SRM **GIRPA** all 8 French Ofls PRIMORIS Who? Anses Laboratory of Hydrology (Nancy) SCL > the French Directorate General for Food, Ministry of Agriculture Pooling knowledge and experience + Regular feedbacks and exchanges with EURL-SRM Defining work leads How? > Sharing the different actions inovalys CERECO > On-line meetings every 3 months Derivatisation by methylation, Kakitani (2017) **Method** A rapid sensitive analysis of dithiocarbamates

fungicides using modified QuEChERS method and liquid chromatography-tandem mass spectrometry, Kakitani et al., J. Pestic. Sci. **42**(4), 145-150 (2017)

(water addition)

- 100 µL Dithiothreitol 1M
- 1 mL NaHCO₃ 1M
- 10 mL acetonitrile
- 50 μL dimethyl sulfate

Mechanical shaking 15 min

QuEChERS « Original » salts addition Mechanical shaking 10 min Centrifugation 5 min, 3000g

> dSPE clean-up MgSO₄/PSA Vortex 30 s Centrifugation 3 min, 3000g

> > Filtration PTFE 0,2 μm

Extract acidification (formic acid)

Amounts and volumes can be adapted

Methylation step

 ${\tt PB} \xrightarrow{} {\tt PBMe \ dimethyl \ propylene bis dithiocarba mate}$

EB → EBMe dimethyl ethylenebis(dithiocarbamic acid)

DD → DDMe methyl dimethyldithiocarbamate

QuEChERS extraction

Results mathematically converted to CS_2 conc. for comparison to MRL

RP-LC-MS/MS

Occupational exposure values were measured

below the limit value → respiratory mask not required <u>in our lab conditions</u> (handling in a fume hood)

Cf: EURL-SRM previous work

Standard preparation: solubilisation and stability

Compound	Solvent	Conc. (mg/L)	Period of stability (not tested beyond)	Storage conditions
Ferbam	Acetonitrile	100	1 month	+4°C
Mancozeb	L-cystein/EDTA aq. solution (pH 9,6)	100	4 months	+4°C
Maneb	L-cystein/EDTA aq. solution (pH 9,6)	150	1 month	+4°C
Propineb	Dimethylformamide	200	Not stable, to be prepa	red freshly each day
Propineb	L-cystein/EDTA aq. solution (pH 9,6)	200	Soluble, no stability data so far, but lower recovery rates obtained after extraction - to be confirmed	
Thiram	Acetonitrile	100	4 months	+4°C
Thiram	Ethanol	100	1 year	-18°C
Zineb	L-cystein/EDTA aq. solution (pH 9,6)	100	15 days	+4°C
Ziram	Acetonitrile	200	1 month	+4°C
Ziram	Ethanol	100	1 year	-18°C
EBMe	Acetonitrile + 0.1% FA	100	2 months	-18°C
PBMe	Acetonitrile + 0.1% FA	100	2 months	-18°C
DDMe	Acetonitrile + 0.1% FA	100	2 months	-18°C

No LC-MS/MS difficulties identified

Analytical method

LC-MS/MS conditions

Column: Aqua C18, 2 x 150 mm, 3 μm, 125 Å

Flow rate: 0.4 mL/min

Eluent A: $H_2O + 0.1\%$ formic acid (FA)

Eluent B: Acetonitrile

Mode ESI +

Ion voltage: 4200 V

Source temperature: 450°C

Time (min)	% A	%В
0	60	40
1	60	40
6	52	48
8	20	80
10	20	80
12	60	40
15	60	40

Extract of brocoli supplemented at 10 ng g⁻¹ of propineb and mancozeb, and 100 ng g⁻¹ of thiram

No LC-MS/MS difficulties identified

Calibration study

- Lower recovery rates observed on broccoli → selected matrix for the tests
- 4 calibration approaches:

- i) Procedural calibration on the matrix test portion (broccoli)
- ii) Procedural calibration on water (no matrix)
- iii) Solvent-based methylated compounds calibration (Acetonitrile + 0.1% FA)
- iv) Matrix-matched methylated compounds calibration (broccoli extract)
- Tested DTCs: propineb, mancozeb, thiram

Calibration study

Method performances

- Validation according to SANTE/12682/2019 guideline
- Matrices: tomato, onion, broccoli, salad, spinach, turnip, strawberry, kiwi
- 1 series per matrix; 3-5 replicates; 3 concentration levels (0.002 0.8 mg/kg for EB/PB, and 0.006 1.2 for DD)
- Supplemented DTCs: maneb (EB), propineb (PB) and ziram (DD)
- Procedural calibration on water

Compound	LOQ (mg/kg)	LOD (mg/kg)	Mean recovery	CV _r max	CV _R max	Measurement uncertainty
EB (expr. in CS ₂)	0.002	0.0007	84 - 110%	8%	16%	48%
PB (expr. in CS ₂)	0.002	0.0007	77 - 84%	10%	11%	32%
DD (expr. in CS ₂)	0.006	0.002	81 - 105%	8%	13%	36%

Data obtained by Capinov

Methods comparison: methylation vs. CS₂

- Sharing of samples with CS₂ detected in official controls
- Comparative analyses performed by Capinov and GIRPA laboratories
 - → both methods carried out by the same lab at the same time

	Matrices	Conc. CS ₂ (mg/kg)	Conc. methylation (mg/kg) [DTC class]	% Diff	
Salads		0.198	0.195 [EB]	-2%	٦
	Salads	0.176	0.184 [EB]	5%	D _O
	Lettuces	0.83	0.93 [EB]	12%	ж
	Lettuces	2.23	2.48 [EB]	11%	background
	Baby leaves lettuce	0.71	0.70 [EB]	-1%	ı
	Baby leaves lettuce	0.068	0.046 [EB]	-32%	ű
	Baby leaves lettuce	0.089	0.113 [EB]	27%	ο
	Baby leaves spinach	0.070	< LOQ	-	ᅕ
	Grape leaves	0.116	0.090 [EB]	-22%	ĕï
	Corn plants	14.6	14.8 [DD]	1%	Ses
	Corn plants	0.43	0.50 [DD]	16%	Matrices with known ${\sf CS}_2$
	Tomatoes	0.052	0.047 [EB]	-10%	Σ

Matrices	Conc. CS ₂ (mg/kg)	Conc. methylation (mg/kg) [DTC class]	% Diff
Shallots	0.153	0.143 [EB]	-7%
Onions	0.140	0.102 [EB]	-27%
Onions	0.320	0.282 [DD]	12%
Garlic	< 0.1	0.009 [DD]	-
Kales	0.57	< LOQ	-
Head cabbages	0.225	< LOQ	-
White cabbages	3.342	< LOQ	-
Red cabbages	5.705	< LOQ	-
Black radishes	1.3	< LOQ	-
Black radishes	0.64	< LOQ	-
Turnips	0.42	< LOQ	-
Rucola	8.845	< LOQ	-

Methods comparison: methylation vs. CS₂

PT analyses: similar results and correct identification of the DTC class

Matrices	PT organizer [spiked DTC]	Conc. CS ₂ (mg/kg)	Conc. methylation (mg CS ₂ /kg) [DTC class]	% Diff
Endive	BIPEA – 02/21 [thiram]	1.025	0.783 [DD]	-24%
Apple	BIPEA – 05/22 [thiram]	0.675	0.734 [DD]	9%
Salad	BIPEA – 06/21 [thiram]	0.530	0.648 [DD]	22%
Pear	BIPEA – 02/22 [thiram]	1.066	1.049 [DD]	-2%
Tomato	EUPT-SRM17 02/22 [metiram]	0.188	0.165 [EB]	-12%

Extract stability

Compound	Tested spiked concentrations (mg/kg)	Period of stability (not tested beyond)	Matrix	Storage conditions
EBMe	0.003 - 0.006 - 1.2			
РВМе	0.003 - 0.006 - 1.2	3 months	Tomato	-18°C
DDMe	0.010 - 0.2 - 2			

Conclusion and perspectives

- A fruitful and dynamic working group
- A promising analytical method for DTCs quantification:
 - > Selective
 - Specific
 - Consistent with CS₂ results
 - May be suitable for routine analyses: simple protocol, procedural calibration on water

Can be used in combination with other approaches on problematic matrices

→ may be useful for supporting the MRL revision process

... but still requires some work to assess efficiency

- Test other individual DTCs (« cross » calibrations) (in progress)
- > Test other relevant matrices
- > Test commercial DTC formulations

Acknowledgements

Thanks to Hubert Zipper for valuable discussions

Thank you for your attention